COMPSCI 705 - SOFTENG 702 Lecture 3

Gesture-based User Interfaces

Motivation?

- Mouse is fastest interaction device
- So why gestures?
 - Natural and intuitive communication
 - Expressive communication
 - 'Clean' communication
 - Overcoming physical handicaps
 - Human-robot interactions
 - Adjunct to speech
 - ???

COMPSCI 705 - SOFTENG 702 §3. Gesture-based User Interfaces

Examples

- Kinect hacks
- <u>3D modelling in space</u>

COMPSCI 705 - SOFTENG 702 §3. Gesture-based User Interfaces

Video/Vision-based gestures

- Non-intrusive (?) gesture recognition
- Consider costs vs benefits

Costs/Benefits

- Price
 - · Better cameras and shutter speed yield better performance
 - Stereo cameras required
 - Use of flashing IR LED illuminators
- Responsiveness
 - Real-time gesture recognition
 - Up to 45ms experienced as no delay
 - At 300ms the system feels sluggish

COMPSCI 705 - SOFTENG 702 §3. Gesture-based User Interfaces

COMPSCI 705 - SOFTENG 702 §3. Gesture-based User Interfaces

Concepts and Colors

8% of men and 1% of women are color blind

Green	%	Red	%	Yellow	%	Black	%	White	%
Safe	62.2	Hot	31.1	Caution	44.8	Off	53.5	Cold	71.5
Go	44.7	Danger	64.7						
On	22.3	Stop	48.5						

% of Hong Kong Chinese who associate particular concepts and colors (Courtney 86)

Green	%	Red	%	Yellow	%	Blue	%
Safe	61.4	Hot	94.5	Caution	81.1	Cold	96.1
Go	99.2	Danger	89.8			Off	31.5
		Stop	100				

% of Americans who associate particular concepts and colors (Bergum&Bergum 81)

COMPSCI 705 - SOFTENG 702 §3. Gesture-based User Interfaces

Costs/Benefits Lexicon size and multi-hand systems • Single hand, dual hand, arm, body, ??? Multi-touch with Kinect • Recogniser for small # of gestures is best Come as you are · How encumbered can the user be, and in what environment Impact on setup time • IR for near, far, ultrasonic, other imagers? Reconfigurability

- Not providing a huge palette to start,
- but modifying the palette
- Modify palette for different tasks

COMPSCI 705 - SOFTENG 702 §3. Gesture-based User Interfaces

9

References

- Baudel, T. and Beaudouin-Lafon, M. (1993) Charade: Remote control of objects using FreeHand gestures, Communications of the ACM, 36(7), pp. 28–35.
- Fröhlich, C., Biermann, P., Latoschik, M.E. and Ipke Wachsmuth, I. (2007) Processing Iconic Gestures in a Multimodal Virtual Construction Environment. In Proceedings of Gesture Workshop, pp. 187-192.
- Krahnstoever, N., Kettebekov, S., Yeasin, M., and Sharma, R. (2002) A real-time framework for natural multimodal interaction with large-screen displays, In Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces, 349.
- Quek, F., McNeill, D., Bryll, R., Duncan, S., Ma, X-F., Kirbas, C., McCullough, K.E. and Ansari, R. (2002) Multimodal Human Discourse: Gesture and Speech, ACM Transactions on Human-Computer Interaction, 9(3), pp. 171-193.
- Rauschert, I., Agrawal, P., Sharma, R., Fuhrmann, S., Brewer, I., and MacEachren, A.M. (2002) Designing a human-centered, multimodal GIS interface to support emergency management, In Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, pp. 119–124.
- Roudaut, A., Baglioni, M. and Lecolinet, E. (2009) TimeTilt: Using Sensor-Based Gestures to Travel Through Multiple Applications on a Mobile Device, Human-Computer Interaction – Interact, LNCS 5726/2009, pp. 830-834.

COMPSCI 705 - SOFTENG 702 §3. Gesture-based User Interfaces

References

- Sowa, T. and Wachsmuth, I. (2001) Interpretation of Shape-Related Iconic Gestures in Virtual Environments, Gesture, Springer, pp. 21-33.
- Sowa, T. (2006) Towards the Integration of ShapeRelated Information in 3D Gestures and Speech, IMCI'06, pp. 92-99.
- Stern, H.I., Wachs, J.P., and Edan, Y. (2008) Designing hand-gesture vocabularies for natural interaction by combining psycho-physiological and recognition factors, International Journal of Semantic Computing, 2(1), pp. 137–160.
- Van den Bergh, M., Halatsch, J., Kunze, A., Bosche, F., van Gool, L. and Schmitt, G. (2009) A novel camera-based system for collaborative interaction with multi-dimensional data models, 9th International Conference on Construction Applications of Virtual Reality, pp. 19-28.
- Wachs, J.P., Kolsch, M., Stern, H. and Edan, Y. (2011) Vision-based Hand-Gesture Applications, Communications of the ACM, 54(2), pp. 60-71.
- Zhu, C. and Sheng, W. (2011) Wearable Sensor-Based Hand Gesture and Daily Activity Recognition for Robot-Assisted Living, IEEE Transactions on Systems, Man, and Cybernetics— Part A: Systems and Humans, To appear, pp. 1-5.

COMPSCI 705 - SOFTENG 702 §3. Gesture-based User Interfaces